Genome-wide operon prediction in Staphylococcus aureus.

نویسندگان

  • Liangsu Wang
  • John D Trawick
  • Robert Yamamoto
  • Carlos Zamudio
چکیده

Identification of operon structure is critical to understanding gene regulation and function, and pathogenesis, and for identifying targets towards the development of new antibiotics in bacteria. Recently, the complete genome sequences of a large number of important human bacterial pathogens have become available for computational analysis, including the major human Gram-positive pathogen Staphylococcus aureus. By annotating the predicted operon structure of the S.aureus genome, we hope to facilitate the exploration of the unique biology of this organism as well as the comparative genomics across a broad range of bacteria. We have integrated several operon prediction methods and developed a consensus approach to score the likelihood of each adjacent gene pair to be co-transcribed. Gene pairs were separated into distinct operons when scores were equal to or below an empirical threshold. Using this approach, we have generated a S.aureus genome map with scores annotated at the intersections of every adjacent gene pair. This approach predicted about 864 monocistronic transcripts and 533 polycistronic operons from the protein-encoding genes in the S.aureus strain Mu50 genome. When compared with a set of experimentally determined S.aureus operons from literature sources, this method successfully predicted at least 91% of gene pairs. At the transcription unit level, this approach correctly identified at least 92% of complete operons in this dataset. This consensus approach has enabled us to predict operons with high accuracy from a genome where limited experimental evidence for operon structure is available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binary particle swarm optimization for operon prediction

An operon is a fundamental unit of transcription and contains specific functional genes for the construction and regulation of networks at the entire genome level. The correct prediction of operons is vital for understanding gene regulations and functions in newly sequenced genomes. As experimental methods for operon detection tend to be nontrivial and time consuming, various methods for operon...

متن کامل

Operons of bacterial genomes contain valuable information for drug design and determining protein functions [2]. The gram-positive Staphylococcus bacterium, for example, is a human pathogen that is responsible for nosocomial infections [3]. Operon prediction on this bacterium can facilitate drug

An operon is a fundamental unit of transcription and contains specific functional genes for the construction and regulation of networks at the whole genome level. The prediction of operons is critical for understanding gene regulation and functions in newly sequenced genomes. As experimental methods for operon detection tend to be non-trivial and time-consuming, various methods for operon predi...

متن کامل

An Improved Genetic Algorithm for Operon Prediction

An operon is a fundamental unit of transcription and contains specific functional genes for the construction and regulation of networks at the whole genome level. The prediction of operons is critical to understanding gene regulation and function in newly sequenced genomes. As experimental methods for operon detection tend to be non-trivial and time-consuming, various methods have been used for...

متن کامل

Biofilm Formation and Detection of IcaAB Genes in Clinical Isolates of Methicillin Resistant Staphylococcus aureus

Objective(s) Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of nosocomial and community infections. Biofilm formation, mediated by a polysaccharide intercellular adhesin (PIA) and encoded by the ica operon, is considered to be an important virulence factor in both S. epidermidis and S. aureus. However, the clinical impact of the ica locus and PIA production is less w...

متن کامل

Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing.

The spread of multidrug-resistant Staphylococcus aureus (MRSA) strains in the clinical environment has begun to pose serious limits to treatment options. Yet virtually nothing is known about how resistance traits are acquired in vivo. Here, we apply the power of whole-genome sequencing to identify steps in the evolution of multidrug resistance in isogenic S. aureus isolates recovered periodical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 32 12  شماره 

صفحات  -

تاریخ انتشار 2004